Optimal Domain-Based Stratified Sampling Allocations Developed in RShiny

Jeff Schneider, RSSC 5/3/2016

Opinions are those of the Author and do not necessarily represent the Defense Department

RSSC

- Defense Research, Surveys and Statistics Center
- Responsible for conducting large scale, crosscomponent military surveys
 - Congressionally mandated surveys
 - Policy makers
- Ex: Don't Ask Don't Tell (2010), Workplace Gender Relations

Presentation Overview

- Introduce sampling tool objective problem
- Optimization math using Chromy (fast)
- Overview of process
- Sampling Tool Demo slides
- Future Roadmap

Sampling Tool Objective

- Develop a sample allocation for complex surveys capable of meeting various precision constraints (MoEs) for many domains of interest (E.g. Army estimate, Male estimate)
 - Ex: "Do you plan to re-enlist?"
- Goal: Minimize cost (and burden), Maximize precision
 - Make the most precise estimate for the lowest cost
- Problem: Conceptually straightforward, but can lead to challenging optimization problems

Domain-Based Sampling

- Domains are subsets of the population
- Examples of active duty military domains include:
 - Service type: Army (N=500,000), Navy (N=300,000), etc.
 - Crossings of Domains:
 - Overseas x Asia Deployment (N = 91,000)
 - Marine Corps x Sr. Officers (N=7,000)
- Typical omnibus military survey, "Status of Forces", has > 70 domains

Chromy Optimization

- Multiple Constraint (Domains) Problem
- Minimize Cost:

•
$$Cost = \sum_{h=1}^{H} C(h)x(h) + C_o$$

- Subject To:
- $\sum_{h=1}^{H} \frac{V(k,h)}{\chi(h)} \le V(k)^*$

Chromy Optimization (contd)

- Treating as equality constraint
- $\lambda(k) = \sum_{h=1}^{H} C(h)x(h) + \sum_{k=1}^{K} \lambda(k) \sum_{h=1}^{H} \left(\frac{V(k,h)}{x(h)} V^{*}(k) \right)$
- $\frac{d\lambda}{dx(h)} = C(h) + \lambda \left(\frac{-V(k,h)}{x(h)^2}\right)$
- Algebraically:
- $x(h) = \left[\lambda \frac{V(k,h)}{C(h)}\right]^{\frac{1}{2}}$

Chromy Optimization (contd)

• Substitute x(h) back into constraint:

•
$$V(k)^* = \sum_{h=1}^{H} \frac{V(k,h)}{x(h)} = \sum_{h=1}^{H} \frac{V(k,h)}{\left[\lambda \frac{V(k,h)}{C(h)}\right]^{\frac{1}{2}}}$$

Result from Chromy (pg. 197):

•
$$\lambda(k) = \sum_{h=1}^{H} \left[\frac{V(k,h)C(h)}{V(k)^*} \right]^2$$

Input Files: Source Data

	Str	ata Variables			Domain Variables				Count:	Count: # of people		
					$\overline{}$) /	
Row#	Service	Paygroup	Gender	Race	CONUS	ВАН	Marital	Education	Enlisted	Count	Strat	
1	1	1	1	1	1	0	0	1	1	5	1	
2	1	1	1	1	1	0	1	1	1	2	1	
3	1	1	1	1	1	0	0	1	1	18	1	
4	1	1	1	1	1	1	1	1	1	143	1	
5	1	1	1	1	2	0	0	1	1 /	10	2	
52K	4	5	2	2	3	1	1	4	0	12	200	
						É	143 People have these attributes: 1,1,1,1,1,1,1,1					

- File from DoD Mainframe, crossing of every variable resulting in a Count in variable format: Variable Service, Level 1 = Army, Level 2 = Navy, etc.
- Row 4:
- Army x Jr-Enlisted x Male x Non-Minority x US x On Base x Married x HS

Input Files: Domain File

Domain	DomVar1	Level	DomVar2	Level	V*(k): Precision
Army	Service	1			0.05
Navy	Service	2			0.05
E1-E4 (Jr. Enlisted)	Paygrad e	1			0.05
E5-E9 (Sr. Enlisted)	Paygrad e	2			0.05
O4-O6 (Sr. Officer)	Paygrad e	5			0.05
Army * Enlisted (Jr. & Sr. Enlisted)	Service	1	Paygrade	1 & 2	0.05
Cinada	Marital	0			0.05

ry

Input Files: Response Rates

From Historical Surveys / Modeling / some guessing

Strata	Predicted (Historical) Response Rate	Eligibility Rate
1	0.12	0.98
2	0.15	0.98
3	0.09	0.99
4	0.14	0.99
199	0.40	0.99
200	0.42	0.99

Most people eligible

Survey time of fielding lag ~ people leave, etc.

Making a Stratum Domain Map

Service	Paygroup	Gender	Race	CONUS	BAH	Marital	Education	Enlisted	Count	Strata	Pretend this is "entire" Stratum 1:
1	1	1	1	1	0	0	1	1	5	1	5+2+18+143 = 168
1	1	1	1	1	0	1	1	1	2	1	
1	1	1	1	1	0	0	1	1	18	1	Strata x Domain
1	1	1	1	1	1	1	1	1	143		

Strat	a Domain	Domain Variable (CODE)	Strata-Dom Count
1	Army	Service =1	5+2+18+143 = 168
1	Navy	Service = 2	0
1	E1-E4 (Jr. Enlisted)	Paygroup = 1	168
1	E5-E9 (Sr. Enlisted)	Paygroup = 2	0
1	O4-O6	Paygroup = 5	0
1	Army*Enlisted	Service = 1 AND Paygroup = (1,2)	168
1	Single	Martial = 0	5+18 = 23
2	Army	Service = 1	
Last Strata	Last Domain		

Stratum Domain Map in R

R pseudo code:

```
for(i in 1:length(DOMAINS)){
    single_domain<-SOURCE_DATA %>%
        group_by(STRATA) %>%
        filter_(eval(DOMAINCRITERIA[i])) %>%
        summarise(strdomsize=sum(COUNT))
    strdomcnt<-rbind(strdomcnt,cbind(single_domain,domain=i))
}</pre>
```

- Essentially:
 - For first to last domain; From the Source Data file;
 - For each STRATA;
 - Subset the Data to look at only 1 particular domain [i];
 - Such as SERVICE = 1 or MARITAL = 0 ... or SERVICE = 1 & MARTIAL = 0!
 - Add up the number of individuals (sum); Store result;
 - Iterate

Stratum Domain Map (Contd)

- This type of mapping exists for Every Strata x Every Domain.
- A survey with 200 strata and 70 domains will have up to 14,000 Stratum-Domain mappings
 - Fewer in practice: can safely drop the 0's and stratification does a good job
- Can compute high value strata for certain domains

Cost Model Calculations

- How much does it cost to get a response?
- Example

Strata	Predicted (Historical) Response Rate	Eligibility Rate
1	0.123	0.98

•
$$C(h) = C\left(\frac{1}{RR*ER}\right) + C_o$$

Most people eligible

Low Response Rate

•
$$C(1) = C\left(\frac{1}{0.123*0.98}\right) + C_o = \sim 9C + C_o$$

For every 9 people we sample, Expect 1 respondent

Variance Calculations

- Domain Variance From Mason (1995)
- $Var(k,h) = \sum_{h=1}^{H} \left(\frac{N_h}{N_k}\right)^2 \left(\frac{N_h n_h}{n_h 1}\right) \left(\frac{p(1-p)}{n_h}\right)$

- Domain Variance (k) Compared to Constraint (k*):
- $Var(k) \leq Var(k^*)$
- · Main takeaway Variance of the domain is related to

Lambda Development

$$\lambda(k) = \sum_{h=1}^{H} \left[\frac{V(k,h)C(h)}{V(k)^*} \right]^2$$

- Quick Review: Lambda is based on Variance, Cost and Constraint
- The initial lambda will dictate some x(h)
- Update lambda based on allocation
- As x(h) increases, v(h) should get closer to V*(k)

Algorithm

- For each strat-domain
- Assign x(h) based on lambda
- Calculate expected domain variance based on all h
- Compare domain variance to constraint
- Update lambda based on how far we are!
- Iterate until we're done
- Mainly working to solve second order interactions as main domains will be optimized by coincidence
 - If we can solve Army x Enlisted x Male, we probably have already solved Army and Enlisted... and Male!
- x(h) is constrained by:
 - Size of strata

Sampling Tool with R & Rshiny

- Developed in R
 - Open source, been around since 1993
- Code re-written into R Shiny
- Shiny is an interactive web application for R
 - Lots of examples: Showmeshiny.com
- Essentially running R on the web
- Deployed to a Shiny server
 - Can be run offline for privacy concerns / private Rshiny

Sampling Tool Demo

Row#	Service	Paygroup	Gender	Race	COMUS	ВАН	Marital	Education	Enlisted	Coun	Strata
1	1	1	1	1	1	0	0	1	1	5	1
2	1	1	1	1	1	0	1	1	1	2	1
3	1	1	1	1	1	0	0	1	1	18	1

- Leverages HandsOnTable to change inputs in precision (javascript written into shiny)
 - Changing All Domains (overall) precision to 0.01

- Calculate computes:
 - Strata Sizes, Stratum/Domain Counts, Domain Sizes, Initial Lambdas
- In this example, all members are in "All Domains" thus the first few rows are equivalent to the Strata size.
 - Domain 1 Strata 1 overall size = 3712. StrDomSize = 3712.

- Compute Allocation Tab
 - Access to assumptions:
 - Min Sample per stratum, Prevalence, Convergence Criterion / Max Iterations
 - Optimization Method currently only supports "Chromy"

Key output: Stratum X Allocation

Other diagnostics

- Other diagnostics ~ StrataSize, PctSampled, RespRate
- Playing with "formmattable" which gives nice proportion bars

Key output:

Dom_var (i.e. how did our allocation do?)

All Domain Precision V* = 0.01, dom_var = 0.01

Army Precision $V^* = 0.05$, dom_var = 0.017

Roadmap

- Goals:
 - Releasing Code + Working Examples
 - Generalizable
 - Can work for a forestry survey / education survey
 - Cost models only based on response rates, not \$\$\$
 - Support other sampling designs
 - Two stage, cluster, etc.
 - Support other optimization methods
 - Currently Chromy, others in references
 - Always improvements to UX / code / etc.

References

- Bond. (1995). "Results of Using Chromy's Algorithm for the Annual Survey of Manufacturers"
- Chromy. (1987). "Design Optimization with Multiple Objectives"
- Choudhry. (2012). "On sample allocation for efficient domain estimation"
- DMDC. (2003). "Sample Planning Tool"
- Mason. (1995). "Sample Allocation for the Status of the Armed Forces Surveys"
- Langford. (2006). "Sample Size Calculation for Small-Area Estimation"
- Williams. (2004). "Survey Designs to Optimize Efficiency for Multiple Objectives: Methods and Applications"
- R Shiny: shiny.rstudio.com
- R Consortium: r-consortium.org
- Show Me Shiny: showmeshiny.com

Acknowledgements

- Tim Markham, Statistician, Leo Burnett
- David McGrath, Statistics Branch Chief, RSSC
- Eric Falk, Statistics Branch Team Lead, RSSC

About

- Jeff Schneider, RSSC
 - Statistician at RSSC from 2010
 - MS in Statistics, George Washington University (2012)
 - BS in Economics/Statistics, Duke University (2010)
 - Contact: <u>Jeffrey.D.Schneider9.civ@mail.mil</u>